Thursday, August 28, 2014

Determine the trigonometric form of z=-2i.

z = -2i. To find the trigonometric
form


We know that if z = x+yi is the Cartesian form, then 
r*cost + i*sint is the trigonometric form  of x+yi. Here r = (x^2+y^2)^(1/2) ,  rcost =
x, r*sin t = y and t = arc tan (y/x).


Therefore z =
0+(-2*i)


r = {0^2+(-2)^2}^(/2) =
2.


x = 0 = 2cost and y= -2i = 2i*sint. So t =  arc tan
(-2/0) = -pi/2.


So -2i = 2cos(-pi)/2+ i*sin
(-pi/2).


So 2cos(-pi)/2+ i*sin
(-pi/2)
is the trigonometric form of -2i.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...