Friday, July 18, 2014

The function f'(x) = (x^3 -2)/x^4. If f(1) = 3, find f(x).

Given the derivative f'(x) = (x^3 -2)
/x^4


We need to find f(x).


We
know that the integral of f'(x) = f(x).


==> f(x) =
intg (x^3-2)/x^4  dx


Let us simplify
f'(x).


==> f(x) = intg (x^3/x^4) - 2/x^4  
dx


             = intg (1/x) - 2x^-4  
dx


             = intg (1/x)dx - intg (2x^-4) 
dx


             = ln x - 2x^-3/-3 +
C


             = lnx + 2/3x^3  +
C


But we know that f(1) =
3


==> f(1) = ln1 + 2/3  + C =
3


==> f(1) = 0 + 2/3 + C =
3


==> C = 3 - 2/3 =
7/3


==> f(x) = lnx + 2/3x^3 +
7/3

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...