Given the derivative f'(x) = (x^3 -2)
/x^4
We need to find f(x).
We
know that the integral of f'(x) = f(x).
==> f(x) =
intg (x^3-2)/x^4 dx
Let us simplify
f'(x).
==> f(x) = intg (x^3/x^4) - 2/x^4
dx
= intg (1/x) - 2x^-4
dx
= intg (1/x)dx - intg (2x^-4)
dx
= ln x - 2x^-3/-3 +
C
= lnx + 2/3x^3 +
C
But we know that f(1) =
3
==> f(1) = ln1 + 2/3 + C =
3
==> f(1) = 0 + 2/3 + C =
3
==> C = 3 - 2/3 =
7/3
==> f(x) = lnx + 2/3x^3 +
7/3
No comments:
Post a Comment