Friday, July 11, 2014

Given the string (an),n>=1 and the sum a1+a2+a3+...+an=(5n^2+6n), what are an and a1?

If the sum a1 + ... + an = 5n^2+6n, then the
sum:


a1 + ... + a(n-1) = 5(n-1)^2 +
6(n-1)


We'll determine an:


a1
+ ... + an - a1 - ... - a(n-1) = 5n^2 + 6n - 5(n-1)^2 -
6(n-1)


We'll eliminate like terms and we'll
get:


an = 5n^2 + 6n - 5(n-1)^2 -
6(n-1)


We'll raise to square and we'll combine like terms
from the right side:


an = 5n^2 + 6n - 5n^2 + 10n - 5 - 6n +
6


an = 10n + 1


We can
determine any other term of the string, replacing n by any natural
value.


For n=1 => a1 =
10+1


a1 = 11


The
requested terms are: a1 = 11 and an = 10n + 1.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...