Thursday, November 28, 2013

Solve the equation 2cos2x + 4sinx = 3.

We have to solve 2*cos 2x + 4*sin x =
3.


We use the relation: cos 2x = 1 – 2* (sin
x)^2


2*cos 2x + 4*sin x =
3


=> 2* (1 – 2* (sin x)^2) + 4*sin x =
3


=> 2 – 4*(sin x)^2 + 4* sin x =
3


let y = sin x


=> 4y^2
– 4y + 1 = 0


=> (2y – 1)^2 =
0


=> 2y = 1


=> y
= 1/2


As y = sin x , sin x = 1/2 or x = arc sin (1/2) =
pi/6 + 2*n*pi and x = 5*pi/6 + 2*n*pi


We get
x = pi/6 + 2*n*pi and x = 5*pi/6 + 2*n*pi.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...