We have to solve 2*cos 2x + 4*sin x =
3.
We use the relation: cos 2x = 1 – 2* (sin
x)^2
2*cos 2x + 4*sin x =
3
=> 2* (1 – 2* (sin x)^2) + 4*sin x =
3
=> 2 – 4*(sin x)^2 + 4* sin x =
3
let y = sin x
=> 4y^2
– 4y + 1 = 0
=> (2y – 1)^2 =
0
=> 2y = 1
=> y
= 1/2
As y = sin x , sin x = 1/2 or x = arc sin (1/2) =
pi/6 + 2*n*pi and x = 5*pi/6 + 2*n*pi
We get
x = pi/6 + 2*n*pi and x = 5*pi/6 + 2*n*pi.
No comments:
Post a Comment