Tuesday, November 12, 2013

Derive tan(a+b), using sin (a +b) and cos(a +b).

To derive t(a+b) , using  sin(a+b) and
cos(a+b).


We know the identities (i) sin(a+b) =
sina*cosn+cosa*sinb and


(ii) cos(a+b) =
csa*cos-sina*sinb.


Therefore tan(a+b) =
sin(a+b)/cos(a+b).....(1).


We substitute sin(a+b) =
sina*cosb+cos*sinb and cos(a+b) = cosa*cosb-sina*sin b in
(1):


 tan (a+b) =
(sina*cosb+cosa*sinb)/(cosa*cos-sina*sinb. We divide  both numerator and denominator in
right by cosa*cosb and get:


tan(a+b) =
{cosa*sinb/(cosa*cosb) - sina*cosb/(coa*cosb)}/{cosa*cosb/(cosacosb) -
sina*sinb/(cosa*cosb)}


Therefore tan(a+b) =
(tana + tanb)/(1- tana*tan*b)
.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...