Tuesday, May 28, 2013

find y' using the implicit differentiation : -x +3x^2 = y^2 -3x^5*y^2

Given the functions:


-x +
3x^2 = y^2 - 3x^5 y^2


We will use the implicit
differentiation to fin y'.


(-x)' + 3(x^2)' = (y62)'
-3(x^5*y^2)'


(-x)' + 3(x^2)' = (y^2)' -3[(x^5)'*y^2 +
(x^5*(y^2)']


-1 + 6x = 2yy' - 3[ 5x^4*y^2 + x^5*
2yy']


-1 + 6x = 2yy' -15x^4*y^2 - 6x^5
*yy'


Now we will combine the terms with y' on the left
sides.


==> 6x^5*yy' - 2yy' = 1-6x -
15x^4*y^2


Now we will factor
y'.


==> y'( 6x^5 *y - 2y) = (1-6x
-15x^4*y^2)


Now we will divide by (6x^5*y -
2y)


==> y' = ( 1- 6x-15x^4*y^2) /
(6x^5 y - 2y)

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...