Saturday, March 3, 2012

Prove the following identity: cos4x - sin4xcot2x = -1

We have to prove that cos 4x - sin 4x * cot 2x =
-1


cos 4x - sin 4x * cot 2x =
-1


use cos 2x = (cos x)^2 - (sin x)^2 and sin 2x = 2 sin x
cos x and cot x = (cos x)/(sin x)


=> (cos 2x)^2 -
(sin x)^2 - 2*(sin 2x)*(cos 2x)*(cos 2x)/(sin
2x)


=>(cos 2x)^2 - (sin x)^2 - 2*(cos 2x)*(cos
2x)


=> ( cos 2x)^2 - 2 ( cos 2x)^2 - ( sin
2x)^2


=> - (cos 2x)^2 - (sin
2x)^2


=> -1*[(cos 2x)^2 + (sin
2x)^2]


As (cos x)^2 + (sin x)^2 =
1


=> -1


Therefore we
proved that


cos 4x - sin 4x *
cot 2x = -1

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...