We have to prove that cos 4x - sin 4x * cot 2x =
-1
cos 4x - sin 4x * cot 2x =
-1
use cos 2x = (cos x)^2 - (sin x)^2 and sin 2x = 2 sin x
cos x and cot x = (cos x)/(sin x)
=> (cos 2x)^2 -
(sin x)^2 - 2*(sin 2x)*(cos 2x)*(cos 2x)/(sin
2x)
=>(cos 2x)^2 - (sin x)^2 - 2*(cos 2x)*(cos
2x)
=> ( cos 2x)^2 - 2 ( cos 2x)^2 - ( sin
2x)^2
=> - (cos 2x)^2 - (sin
2x)^2
=> -1*[(cos 2x)^2 + (sin
2x)^2]
As (cos x)^2 + (sin x)^2 =
1
=> -1
Therefore we
proved that
cos 4x - sin 4x *
cot 2x = -1
No comments:
Post a Comment