y = (1+x^2)^3.
We have to
find dy/dx
We use d/dx {u(v(x))} = (du/dv)
(dv/dx)
Let v(x) = 1+x^2
d/dx
{v(x)} = d/ dx {1+x^2} = d/dx(1)+ d/ dx(x^2) = =
0+2x
Therefore d/dx{1+x^2)^3 = 3(1+x^2^(3-1)*d/dx
(1+x^2)
d/dx(1+x^2)^3 =
3(1+x^2)^2*2x
Therefore dy/dx =
d/dx(1+x^2)^3 = 6x(1+x^2)^2.
No comments:
Post a Comment