Wednesday, March 14, 2012

If y=(1+x^2)^3 find dy/dx.

y = (1+x^2)^3.


We have to
find dy/dx


We  use d/dx {u(v(x))} =  (du/dv)
(dv/dx)


Let v(x) = 1+x^2


d/dx
{v(x)} = d/ dx {1+x^2} = d/dx(1)+ d/ dx(x^2) = =
0+2x


Therefore d/dx{1+x^2)^3 = 3(1+x^2^(3-1)*d/dx
(1+x^2)


d/dx(1+x^2)^3 =
3(1+x^2)^2*2x


Therefore dy/dx =
 d/dx(1+x^2)^3 = 6x(1+x^2)^2.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...