Friday, March 16, 2012

Evaluate the anti derivative of e^2x * cos 3x.

We have to find Int [e^2x * cos 3x
dx]


Here the best way to solve would be to use integration
by parts.


Int [u dv] = u*v – Int [v
du]


take u = e^2x, du = 2*e^2x
dx


dv = cos 3x dx, v = (1/3)* sin
3x


Int [e^2x * cos 3x
dx]


=> [e^2x*sin 3x]/3 – (2/3)*Int [e^2x * sin 3x
dx]


We have again landed up with an integral like the
original with Int [e^2x * sin 3x dx].


So using integration
by parts again, this time we take U = e^2x, dU = 2*e^2x
dx


dV = sin 3x dx, V = (-1/3) cos
3x


Int [e^2x * sin 3x dx] = (- e^2x * cos 3x)/3 + (2/3)*Int
[e^2x * cos 3x dx]


So we
have


Int [e^2x * cos 3x dx] = [e^2x*sin 3x]/3 – (2/3) [(-
e^2x * cos 3x)/3 + (2/3)*Int [e^2x * cos 3x dx]]


=>
Int [e^2x * cos 3x dx] = [e^2x*sin 3x]/3 + (2/3)*e^2x * cos 3x)/3 - (2/3)*(2/3)*Int
[e^2x * cos 3x dx]]


=> Int [e^2x * cos 3x dx] +
(2/3)*(2/3)*Int [e^2x * cos 3x dx] = [e^2x*sin 3x]/3 + (2/3)*(e^2x * cos
3x)/3


=> (13/9)* Int [e^2x * cos 3x dx] = [e^2x*sin
3x]/3 + (2/3)*(e^2x * cos 3x)/3


=> Int [e^2x * cos
3x dx] =3*[e^2x*sin 3x]/13 + 2*(e^2x * cos 3x)/13


=>
Int [e^2x * cos 3x dx] = [3*(e^2x*sin 3x) + 2*(e^2x * cos
3x)]/13


The required result
is


[3*(e^2x*sin 3x) + 2*e^2x*cos 3x]/13 +
C

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...