Tuesday, March 15, 2016

What is the angle x if tan 3x -tan^3 x=0?

To find the angle x if tan 3x -2tan^3
x=0.


tan3x = (3tanx-tan^3x) / (1-3tan^2x) is an
identity.


So we use this in the given
equation:


(3tanx-tan^3x) / (1-3tan^2x) - 2tan^3x =
0.


(3tanx-tan^3x) -  (1-3tan^2x)*2tan^3x =
0.


tanx {3 -tan^2x - 2tan^2 + 6tan^4x} =
0


tanx (3-3tan^2+6tan^4x) = 0. We divide by
3.


tanx (tan^4x-3tan^2x +1) =
0.


tanx(tan^2x-1)(1+2tan^2) =
0.


tanx = 0, tan^2-1 = 0, or 1+2tan^2x =
0.


tanx = 0, ortan^2 =1, or tan^2 = 1. So tanx = +or-
1.


So x = npi, or x= npi+pi/4, or npi - pi/4, for n =
0,1,2,..

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...