Thursday, March 3, 2016

Find the angle a for the identity 2sin^2a-sina-1=0 to be true.

We'll apply substitution technique and we'll note sin a =
t.


We'll re-write the equation using the new variable
t:


2t^2 - t - 1 = 0


Since it
is a quadratic equation, we'll apply the quadratic
formula:


t1 = [1 + sqrt(1 +
8)]/4


t1 = (1+3)/4


t1 =
1


t2 = (1-3)/4


t2 =
-1/2


We'll put sin a =
t1.


sin a = 1


a = (-1)^k*arc
sin 1 + k*pi


a = (-1)^k*(pi/2)
+ k*pi


Now, we'll put sin a =
t2.


sin a = -1/2


a =
(-1)^k*arcsin(-1/2) +  k*pi


a = (-1)^(k+1)*arcsin(1/2)
+  k*pi


a = (-1)^(k+1)*(pi/6) +
k*pi


The solutions of the equation are the
values of measures of the angle a: {(-1)^k*(pi/2) + k*pi}U{(-1)^(k+1)*(pi/6) +
k*pi}.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...