Monday, October 7, 2013

Verify using an example that a.(b.c)=(a.b).c is not true. Explain your reasoning both numerically and by using the definition of the dot product.

For three
vectors:


  • a = (ax)i + (ay)j +
    (az)k

  • b = (bx)i + (by)j + (bz)k

  • c = (cx)i + (cy)j + (cz)k,

a.b = (ax)(bx) + (ay)(by) + (az)(bz) and b.c =
(bx)(cx) + (by)(cy) + (bz)(cz)


a.(b.c)= a. [(bx)(cx) +
(by)(cy) + (bz)(cz)]


=> [(ax)i + (ay)j +
(az)k]*[(bx)(cx) + (by)(cy) + (bz)(cz)]


=>
(ax)[(bx)(cx) + (by)(cy) + (bz)(cz)]i + (ay)[(bx)(cx) + (by)(cy) + (bz)(cz)]j +
(az)[(bx)(cx) + (by)(cy) + (bz)(cz)]k


=>
[(ax)(bx)(cx) + (ax)(by)(cy) + (ax)(bz)(cz)]i + [(ay)(bx)(cx) + (ay)(by)(cy) +
(ay)(bz)(cz)]j + [(az)(bx)(cx) + (az)(by)(cy) + (az)(bz)(cz)]k
...(1)


(a.b).c =


[(ax)(bx) +
(ay)(by) + (az)(bz)].c


=>[(ax)(bx) + (ay)(by) +
(az)(bz)][(cx)i + (cy)j + (cz)k]


=> [(ax)(bx) +
(ay)(by) + (az)(bz)](cx)i + [(ax)(bx) + (ay)(by) + (az)(bz)](cy)j + [(ax)(bx) + (ay)(by)
+ (az)(bz)](cz)k


=> [(ax)(bx)(cx) + (ay)(by)(cx) +
(az)(bz)(cx)]i + [(ax)(bx)(cy) + (ay)(by)(cy) + (az)(bz)(cy)]j + [(ax)(bx)(cz) +
(ay)(by)(cz) + (az)(bz)(cz)]k ...(2)


As can be seen (1) is
not equal to (2)


This is easier to see as a numerical
example:


a = i + 2j + 3k, b = 4i + 5j + 6k and  c = 7i + 8j
+ 9k,


a.(b.c)= [1*4*7 + 1*5*8 + 1*6*9]i + [2*4*7 + 2*5*8 +
3*6*9]j + [3*4*7 + 3*5*8 + 3*6*9]k


=> 122i + 244j+
366k


(a.b).c = [1*4*7 + 2*5*7 + 3*6*7]i + [1*4*8 + 2*5*8 +
3*6*8]j + [1*4*9 + 2*5*9 + 3*6*9]k


=> 224i+ 256j +
288k


As can be seen 122i + 244j+ 366k is not the same as
224i+ 256j + 288k.


Therefore it is proved
that a.(b.c)=(a.b).c is not true

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...