Wednesday, October 30, 2013

Find the derivative of ln (-8 + 3z^2).

We use  d/dx {ln{fx} = (1/f(x))*(d/dx)
f(x).


Or


{lnf(x)}' =
(1/f(x)f'(x).


Here we apply the above method to  f(z) = (-8
+ 3z^2).


The differentiation is with respect to
z.


f'(z) = (-8+3z^2)' = (-8)'+(3z^2)' = 0+3*2z =
6z.


Therefore {lnf(z)} = {ln (-8 +
3z^2)}'


{ln (-8 + 3z^2)}' = {1/ (-8 + 3z^2)}* (-8 +
3z^2)'


{ln (-8 + 3z^2)}' =
6z/(-8+3z^2).


Therefore {ln (-8 + 3z^2)}' =
6z/(3z^2-8).

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...