We use d/dx {ln{fx} = (1/f(x))*(d/dx)
f(x).
Or
{lnf(x)}' =
(1/f(x)f'(x).
Here we apply the above method to f(z) = (-8
+ 3z^2).
The differentiation is with respect to
z.
f'(z) = (-8+3z^2)' = (-8)'+(3z^2)' = 0+3*2z =
6z.
Therefore {lnf(z)} = {ln (-8 +
3z^2)}'
{ln (-8 + 3z^2)}' = {1/ (-8 + 3z^2)}* (-8 +
3z^2)'
{ln (-8 + 3z^2)}' =
6z/(-8+3z^2).
Therefore {ln (-8 + 3z^2)}' =
6z/(3z^2-8).
No comments:
Post a Comment