Friday, November 23, 2012

Given the right triangle ABC, where A=90 degrees, calculate the expression: E=cosB/sinC+ cosC/sinB

We'll calculate the first ratio:
cosB/sinC


We know that A = pi/2 and the sum of the angles
of a triangle is pi.


A + B + C =
PI


pi/2 + B + C = pi


B + C =
pi - pi/2


B  +C = pi/2


B =
pi/2 - C


Now, we'll apply cosine function both
sideS:


cos B = cos (pi/2 -
C)


cos B = cos pi/2*cos C + sin pi/2*sin
C


cos pi/2 = 0 and sin pi/2
=1


cos B = sin C


cosB/sinC =
sin C/sin C = 1


Now, we'll calculate the second
ratio:


 cosC/sinB = cos (pi/2 - B)/sin
B


 cosC/sinB = sin B/sin
B


 cosC/sinB = 1


The value of
the given expression is:


E = 1 +
1


E =
2

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...