Given:-
(x^2) + (y^2) = 100
..........(1)
x - y =
2...........(2)
Squaring (2) on both sides we
get
(x-y)^2 = (2)^2
or, (x^2)
+ (y^2) - 2xy = 4
Putting the value of (x^2) + (y^2) from
(1) in the above equation we get
100 - 2xy =
4
or, 2xy =
96...........(3)
Now, (1) + (3)
gives
(x^2) + (y^2) + 2xy = 100 +
96
or, (x+y)^2 = 196
or,
(x+y)^2 = (14)^2
or, (x+y) =
14.........(4)
or, (x+y) =
-14..........(5)
Now, (2) + (4)
gives
2x = 16
or, x =
8
Thus, y =
6...........(6)
Also, (2) + (5)
gives
2x = -12
or, x =
-6
Thus, y =
-8..........(7)
Hence the two values of (x,y) are (8,6)
& (-6,-8)
No comments:
Post a Comment