Thursday, November 10, 2011

What is the limit of the fraction tan4x/tan2x, x-->0 ?

We'll create the remarcable
limits:


lim tan x/x = 1, if
x->0


We'll re-write the
function:


lim [4x*(tan 4x)/4x]*[(2x)/2x*tan 2x] = lim
4x*lim [(tan 4x)/4x]*lim[(2x)/tan 2x]*lim (1/2x)


We know
that lim [(tan 4x)/4x] = 1 and lim[(2x)/tan 2x] = 1


lim
[4x*(tan 4x)/4x]*[(2x)/2x*tan 2x] = lim 4x*lim (1/2x)


lim
[4x*(tan 4x)/4x]*[(2x)/2x*tan 2x] =
(4/2)lim(x/x)


The limit of the given function
is : lim tan4x/tan2x = 2, if x -> 0.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...