We'll find the antiderivative of the given function
            evaluating the indefinite integral of this function.
Int
            f(x)dx = Int sqrtx dx/(1+sqrtx)
We'll solve the integral
            using substitution technique. We'll substitute 1 + sqrt x =
            t.
We'll differentiate both
            sides:
dx/2sqrt x = dt
dx =
            (2sqrt x)dt
But sqrt x = t -
            1
dx = 2(t - 1)dt
We'll
            re-write the integral;
Int f(x)dx = Int 2(t -
            1)^2dt/t
We'll expand the
            square;
Int 2(t - 1)^2dt/t = 2 Int (t^2 - 2t +
            1)/t
We'll apply the property of integrals to be
            additive:
2 Int (t^2 - 2t + 1)/t = 2Int t^2dt/t - 4Int
            tdt/t + 2Int dt/t
2 Int (t^2 - 2t + 1)/t = 2Int tdt - 4 Int
            dt + 2Int dt/t
2 Int (t^2 - 2t + 1)/t = 2*t^2/2 - 4t +
            2ln|t| + C
We'll simplify and we'll
            get:
2 Int (t^2 - 2t + 1)/t = t^2 - 4t + 2ln|t| +
            C
Int f(x)dx = (1 + sqrt x)^2 - 4(1 + sqrt x)
            + ln (1 + sqrt x)^2 + C
 
No comments:
Post a Comment