We'll find the antiderivative of the given function
evaluating the indefinite integral of this function.
Int
f(x)dx = Int sqrtx dx/(1+sqrtx)
We'll solve the integral
using substitution technique. We'll substitute 1 + sqrt x =
t.
We'll differentiate both
sides:
dx/2sqrt x = dt
dx =
(2sqrt x)dt
But sqrt x = t -
1
dx = 2(t - 1)dt
We'll
re-write the integral;
Int f(x)dx = Int 2(t -
1)^2dt/t
We'll expand the
square;
Int 2(t - 1)^2dt/t = 2 Int (t^2 - 2t +
1)/t
We'll apply the property of integrals to be
additive:
2 Int (t^2 - 2t + 1)/t = 2Int t^2dt/t - 4Int
tdt/t + 2Int dt/t
2 Int (t^2 - 2t + 1)/t = 2Int tdt - 4 Int
dt + 2Int dt/t
2 Int (t^2 - 2t + 1)/t = 2*t^2/2 - 4t +
2ln|t| + C
We'll simplify and we'll
get:
2 Int (t^2 - 2t + 1)/t = t^2 - 4t + 2ln|t| +
C
Int f(x)dx = (1 + sqrt x)^2 - 4(1 + sqrt x)
+ ln (1 + sqrt x)^2 + C
No comments:
Post a Comment