To find x + iy: 4 + 2i + ( 1 – i)/ ( x + iy) – (9 + 7i)(3
+ 2i) = 32 + i.
We rewrite the given expression
as:
( 1 – i)/ ( x + iy) = (9 + 7i)(3 + 2i) +
32+i-4-2i
(1-i)/(x+iy) = (9+7i)(3+2i)+ 28 -
i.
(1-i)/(x-yi) =
(27+18i+21i+14i^2)+28-i
(1-i)/(x+yi) = (13 +39i)+28-i, as
i^2= -1.
(1-i)/(x+yi) =
41+38i
(1-i)(x-yi)/(x+y^2-y^2*i^2). =
41+38i
(x-y)/(x^2+y^2) - (x+y)i/(x^2+y^2) =
41+38i(1)
We equate real parts on both sides of (1) and
the equate imaginary parts on both sides separately:
Real
parts: (x-y)/(x^2+y^2) = 41....(2)
Imaginary parts:
(x+y)/(x^2+y^2) = -38....(3)
(2)/(3): (x-y)/(x+y) =
41/-38
38(x-y) =
-41(x+y).
(38+41)x =
(-41+38)y
79x = -3y.
x =
-(3/79)y
Substitute x= -3y/79 in (x+y)/(x^2+y^2) =
-38:
(-3/79+1)y/{(-3/79)^2 +1}y^2 =
-38.
79(76)y/{3^2+79^2)y^2 =
-38.
76*79y =
-38(3^2+79^2)y^2
y = 76*79/(-38)(6250) =
-79/3125.
Therefore x = -3y/79 = -3*-79/79*3125 =
3/3125.
Therefore x = 3/3125 and y =
-79/3125.
So x+yi =
(3/3125)+(-79/3125)i.
No comments:
Post a Comment