Monday, August 3, 2015

Solve the problemintegral of y=x^3/(x^4+1)^5

Given y= x^3/ (x^4 +10^5


We
need to find the integral of y.


==> intg y = intg (
x^3/(x^4 +1)^5


Let us assume that u = x^4 + 1   ==>
du = 4x^3 dx


Now we will
substitute.


==> intg y = intg ( x^3 / u^5) * du/
4x^3


We will reduce similar
terms.


==> intg y = intg ( du/ 4u^5
)


= (1/4) intg u^-5 du


= (1/4)
u^-4 / -4  + C


= (-1/16) u^-4 +
C


= -1/16u^4 + C


Now we will
substitute with u = x^4 +1


==> intg y
= (-1/16)*(x^4+1)^4 + C

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...