We'll write the numerator: 6x-8=2x+4x
-9+1
y=(6x-8)/(2x+1)=[(2x+1)/(2x+1)]+[(4x-9)/(2x+1)]
y=1+[(4x-9)/(2x+1)]
We'll
try to do the same with the ratio
[(4x-9)/(2x+1)]=[(2x+1+2x-1-9)/(2x+1)]=
[(2x+1)/(2x+1)]+[(2x-10)/(2x+1)]=1+[(2x-10)/(2x+1)]
So y
= 1+1+[(2x-10)/(2x+1)]
We'll follow the same
steps:
[(2x-10)/(2x+1)].
[(2x-10)/(2x+1)]=
[(2x+1-1-10)/(2x+1)]=1- [11/(2x+1)]
y=1+1+1-
[11/(2x+1)]
y=3-
[11/(2x+1)]
If y is integer, the fraction [11/(2x+1)] has
to be also an integer number. For this reason, (2x+1) has to be the divisor of the
number 11. So, (2x+1) could be:+1,-1,+11,-11.
Now, we'll
put (2x+1) = 1
2x=0, x=0 and is a natural number, so it
follows the
constraint
y=(6*0-8)/(2*0+1)
y=-8/1
y=-8
(2x+1)
= -1
2x=-2
x=-1, but "-1" is
not a natural number, so (2x+1) is different
from -1
(2x+1) =
11
2x=10
x=5 and is a natural
number.
y=(6*5-8)/(2*5+1)
y=22/11
y=2
(2x+1)
= -11
2x=-12
x=-6 and is not a
natural number.
The natural values of x, that
makes the ratio y integer, are: {0 ; 5}.
No comments:
Post a Comment