Sunday, August 26, 2012

What are the natural numbers x if y is integer? y=(6x-8)/(2x+1)

We'll write the numerator: 6x-8=2x+4x
-9+1


y=(6x-8)/(2x+1)=[(2x+1)/(2x+1)]+[(4x-9)/(2x+1)]


y=1+[(4x-9)/(2x+1)] 


We'll
try to do the same with the ratio
[(4x-9)/(2x+1)]=[(2x+1+2x-1-9)/(2x+1)]=


[(2x+1)/(2x+1)]+[(2x-10)/(2x+1)]=1+[(2x-10)/(2x+1)] 


So y
= 1+1+[(2x-10)/(2x+1)]


We'll follow the same
steps:


[(2x-10)/(2x+1)].


[(2x-10)/(2x+1)]=
[(2x+1-1-10)/(2x+1)]=1- [11/(2x+1)] 


y=1+1+1-
[11/(2x+1)]


y=3-
[11/(2x+1)]


If y is integer, the fraction [11/(2x+1)] has
to be also an integer number. For this reason, (2x+1) has to be the divisor of the
number 11. So, (2x+1) could be:+1,-1,+11,-11.


Now, we'll
put (2x+1) = 1


2x=0, x=0 and is a natural number, so it
follows the
constraint


y=(6*0-8)/(2*0+1)


y=-8/1


y=-8


(2x+1)
= -1


2x=-2


x=-1, but "-1" is
not a natural number, so (2x+1) is different
from -1 


(2x+1) =
11


2x=10


x=5 and is a natural
number.


y=(6*5-8)/(2*5+1)


y=22/11


y=2 


(2x+1)
= -11


2x=-12


x=-6 and is not a
natural number.


The natural values of x, that
makes the ratio y integer, are: {0 ; 5}.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...