To find the integral of the function h(x) = x^3 -3x^2 +2
for the interval [0,1].
Int h(x) dx = H(x) = Int (x^3
-3x^2 +2) dx.
H(x) = Int x^3 dx- Int 3x^2 dx+ Int 2dx +C
constant C.
H(x) = (1/4)x^4 -3(1/3)x^3+ 2x+
C
H(x) = (1/4)x^4 = x^3+2x
+C
Therefore Int h(x) dx from x= 0 to x= 1 is H(1)-
H(0).
H(1) - H(0) = {1/4)1^4-1^3
+2+C}-{1/4)0^4-0^3+2*0+C.
H(1) - H(0) = 1/4-1+2 , as other
terms cancel.
H(1)- H(0) =
5/4.
Therefore {Int h(x) dx from x= 0 to x = 1} =
5/4.
No comments:
Post a Comment