Friday, September 25, 2015

tanx + tany/ cotx + coty = (tanx)(tany)

(tanx + tany)/(cotx + coty) =
(tanx)(tany)


We will start from the left
side.


We know that:


tanx =
sinx/cosx 


cot(x) =
cosx/sin(x)


==> (tanx+tany)/(cot(x)+cot(y)) =
(sin(x)/cosx + siny/cosy)/(cosx/sinx + cosy/siny).


 =[ (
sinx*cosy + siny*cosx)/cosx*cosy]/ (cosx*siny+sinx*cosy)/
sinx*siny)


    Now we will reduce like
terms.


==>  (1/cosx*cosy) /
(1/sinx*siny)


==> sinx*siny/
cosx*cosy


==> sinx/cosx * siny / cosy = tanx * tany
..............q.e.d

No comments:

Post a Comment